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Abstract – FasterCap and FastCap2 are 
quasistatic capacitance solvers able to 
handle arbitrarily shaped conductors 
embedded in multiple, piecewise-constant, 
dielectric regions. This paper reviews the 
underlying theory in FasterCap’s treatment 
of dielectric regions, where the capacitance 
problem is re-formulated as an equivalent 
free-space one, where both the conductor-
dielectric and the dielectric-dielectric 
interfaces are replaced by a surface-charge 
density layer, and the conductors and 
dielectrics are replaced by free space. Then 
a free-space Green’s function is used to 
calculate the electric potential, considering 
the field generated by a total charge on the 
conductor-dielectric interfaces, and a 
polarization charge on the dielectric-
dielectric interfaces. The relation between 
the source charges and the potential 
ultimately yields the required capacitance 
values. 

 
I. INTRODUCTION 

 
The objective of this paper is to explain how the 
capacitance solvers FasterCap and FastCap2 can 
deal with arbitrarily shaped conductors embedded 
in multiple, piecewise-constant, dielectric regions. 
The theoretical ground for the employed method 
is well established, and the formal mathematical 
treatment can be found in [1] and [2] for the 3D 
case and the 2D case respectively. 
In this paper we present a more intuitive and 
engineering view of this concept, applied to the 3D 
case. The 2D case requires a slightly different 
mathematical formulation, however similar 
considerations apply, and therefore it will not be 
explicitly presented in the paper. 
Section II briefly reviews the mathematical 
formulation of the capacitance problem. In section 
III the solution method used in FasterCap and 
FastCap2 is described. Section IV demonstrates 
the method with some example cases. 

 
II. MATHEMATICAL FORMULATION OF 

THE CAPACITANCE PROBLEM 
 

As per definition, the capacitance is the ratio of 
charge to potential on an electrically charged, 
isolated conductor: 
 

 
V

Q
C =  (1) 

 

Extending this definition to a set of m conductors, 
we can express this relation in the form of a 
Maxwell capacitance matrix [6]: 
 

 

















=
































mmmmm

m

Q

Q

V

V

CC

CC

MM

K

MMM

L 11

,1,

,11,1

 (2) 

 
where the Maxwell capacitance matrix C, which is 
square, symmetrical, has real elements and 
dimension m, summarizes the relationship 
between conductor potentials Vi and conductor 
induced free charges Qi. The positive diagonal 
element Ci,i represents the self-capacitance of 
conductor i, while the negative off-diagonal 
element Ci,j represents the capacitive coupling 
between conductors i and j. 
Our goal is to calculate the elements of the 
capacitance matrix C. Recalling Coulomb’s law, 
that gives a simple formula for the electric field of 
a stationary point charge in free space, we can 
readily derive the well known formula for the 
corresponding electric potential: 
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(plus an arbitrary constant V0 that we assume zero  
for the time being). In (3) q is the value of the 

charge, ε0 is the vacuum permittivity, and r is the 
distance of the charge from the observation point. 
It is tempting therefore to try exploiting a similar 
relation, extended to an integration region over a 
set of charges, for directly calculating, one by one, 
the elements Pi,j of a matrix P, that relates the 
charges Q to the voltages V, 
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and invert this matrix to get the matrix C1. 

                                                             
1 The reader may wonder if there is a method to calculate the 
Ci,j elements without passing through P. After all, Gauss’s law 
gives a direct relationship between the charge and the electric 
field, which is the gradient of the potential. However, to apply 
Gauss’s law, we must calculate the electric field, which is a 
function of the potentials applied on the conductors. So we 
need to solve first for the field generated in the space by a 
specific set of voltages V; and then calculate the charges on the 
conductors via Gauss’s law. This is possible, and is the basis for 
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With this goal in mind, let’s formalize the required 
steps, starting with the Maxwell equations: 
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where E
r

 is the electric field strength, H
r

 is the 

magnetic field strength, D
r

 is the electric flux, B
r

 

is the magnetic flux, J
r

 is the current density, and 

ρ is the free volume charge density.  In the static 
case, the field quantities do not depend on time, 
therefore the magnetic and electric field become 

decoupled, being tB ϑϑ /
r

 and tD ϑϑ /
r

 null.  For 

our electrostatic problem, we are interested in the 
electric field. Moreover, since the electrostatic 
field exists only outside the conductors (if the field 
was not null inside the conductors, the free 
charges would move, therefore the field would not 

be static), the current J
r

 is null: no conduction 

current and no impressed current. We are left 
therefore with the fundamental equations of the 
electrostatics2: 
 

 0=∇ Ex
r

 (9) 

 ρ=⋅∇ D
r

 (10) 

 
In regions of space filled with homogeneous, 
isotropic, nondispersive, linear materials, also the 
following relation holds 
 

 ErD
rr

)(ε=  (11) 

 
where ε(r) is the material permittivity, assumed to 
be constant in each of the regions of interest (i.e. 
piecewise constant). 
A standard way to solve the system composed by 

(9), (10) and (11) is to leverage (9) to describe E
r

 
by a scalar potential φ: 
 

 ϕ−∇=E
r

 (12) 

                                                                                              
the so-called indirect methods. They are called ‘indirect’ since 
there are two different solution steps involved. These are not, 
anyway, the methods used by FasterCap and FastCap2, which 
are direct. For a broader introduction to the topic, see [4]. 
2 Note that these equations are valid also in the quasistatic 
case, when the wavelength of the frequency variation of the 
fields is large with respect to the dimensions of the structures 
of interest. A detailed formal derivation of this condition can 
be found in [7]. 

 
(since the curl of a gradient is always identically 
zero, (9) is automatically true), and upon 
substitution into (10) via (11) get the Possion’s 
equation: 
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To be able to solve this equation, we need to 
specify appropriate boundary conditions, 
matching our problem. We consider therefore, as 
boundary, the surface of the conductors Sc; the 
interfaces between regions filled with different 
dielectric materials Sd; and the potential at infinity. 

Note also that in the space SR \3
between 

conductors and dielectric interfaces (that is, the 

total volume minus S = Sc U  Sd) there are no free 

charges, so ρ is zero, and (13) simplifies to the 
Laplace’s equation (14). 
We have therefore the following boundary 
problem: 
 

 02 =∇ ϕ ,    in SR \3
 (14) 
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where (15)-(18) provides the conditions on all the 
boundaries around the space of interest. In 
particular,  (15) states that the potential on the 
surface of the conductors must be equal to the 
given potential v; (16) and (17) give the conditions 
across a dielectric interface, i.e. the potential must 
be a continuous function (16), and the normal 

component of the electric flux nD
r

 must be 

preserved, n being the normal to the surface Sd 

(17); and the limit in (18) fixes zero as the value of 
the potential at infinity. 

 
III. EQUIVALENT CHARGE 

FORMULATION 
 

For capacitance calculation, only the induced free 
charge on the conductors is required. 
Remembering the idea given by (3), we can think 
to solve an equivalent problem, replacing the 
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conductors and the dielectrics with free space, and 
account for their former influence on the potential 
field by placing a thin layer of stationary charges 
on Sd and Sc. We then calculate the potential field 
generated by this charge arrangement. 
This approach is known in literature as the 
Equivalent-Charge Formulation (ECF). 
In particular, since on each conductor-to-
dielectric interface the total charge is the sum of 
free charge and polarization charge, we replace 
the conductor-to-dielectric interface with a 

surface charge density σc equivalent to the total 
charge density. This is shown in Fig. 1. Please note 

that stating that σt = σf + σp, where σt is the total 

charge density, σf  is the free charge density, and 

σp is the polarization charge density, means 

considering σt, σf, σp as signed quantities. In 

general, σt will be, in absolute value, smaller than 

σf, since the free charge is compensated to some 
extent by the bounded dipole charges of the 
dielectric, that are aligned generating a net charge 
(due to the electric field). Note that the effect of 
the dielectric in contact with the surface of a 
conductor is accounted for with a relative 

permittivity value ε, in the relation σf = ε σt, i.e. 

the free conductor charge is ε times the total 
charge on the surface. Basically, the presence of 

the dielectric forces the accumulation of a charge ε 
times greater than the charge we would have 
without the dielectric, for the same applied 
potential difference. This is of course why high 
permittivity dielectrics are used as interposers 
between the plates of a capacitor to increase its 
capacitance value. 
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Fig. 1.  Conductor-to-dielectric interface (a) and its Equivalent-

Charge Formulation model (b) 

 
In a similar way, since on each dielectric-to-
dielectric interface the total charge is the 
polarization charge, we replace the dielectric-to-
dielectric interface with a surface charge density 

σd equivalent to the total resulting polarization 
charge density. This is shown in Fig. 2. In this case, 
the different density of polarization charges at the 
interface gives a total polarization charge density. 
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Fig. 2.  Dielectric-to-dielectric interface (a) and its Equivalent-

Charge Formulation model (b) 

 
We have now an arrangement of charges in free 
space. We can therefore easily write the potential 
as superposition of the potentials due to the 

conductor surface charge density σc and the 

polarization surface charge density σd, as follows 
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In (19), 
3Rx∈  is the point in space at with we 

evaluate the potential, due to conductor and 
polarization charges, and we made use of the so 
called Green’s function for the free space [4]; 
more intuitively, however, (19) can be seen simply 
as an extension of (3). 
We need now to meet the conditions (14)-(18). 
Note that the potential defined in (19) already 
satisfies the Laplace’s equation (14), is continuous 

throughout 
3R , satisfying (16), and decays like 

x/1 , as requested by (18). We need therefore only 
to  match the remaining boundary conditions (15) 
and (17).  We therefore use  (19), (15) and (17) to 
build a system of equations resembling (4), where 

we substitute ϕ as given by (19) into (17), and we 

solve for σ, given the potentials Vi on the 

conductors. Once the total charge densities σc are 
known, we readily get the free charges Qi induced 

on the conductors, integrating the product of σc 

and ε of on the conductor areas: 
 

 x

S

ci dSxxQ
ci

)()( εσ∫=  (20) 

 

Note that if we neglected the multiplication by ε 
we would calculate only the total charges, but for 
the sake of capacitance calculation (2) we must 
consider the free induced charges, not the total 
ones. 
We can now compute the terms Cij of (2).  This can 
be done in an easy way, defining a set of m unit 
voltage vectors Vk (i.e. the voltage vector V1 is 
composed by a first element V1 is equal to one 
while the following elements are zero, the  voltage 
vector V2 has the second element V2 is equal to 
one and the other elements are zero, and so on). 
Therefore, multiplying by V1 in (2) will provide a 
vector Q1 that is composed by the elements of the 
first column of C. Solving in total m problems we 
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completely find C. We use this method since our 
system of equations resembles (4), while there is 
no direct knowledge of (2); and the method 
described above is equivalent to inverting the 
matrix P in (4). It is worth adding that the reason 
why we don’t invert P straight away is that the 
matrix inversion operation has a complexity of N3, 
where N is the size of the matrix, becoming 
therefore very quickly computationally intractable 
as N grows. FasterCap and FastCap2, on the other 
hand, employ an acceleration scheme that allows 
to treat the problem with a complexity of NM, 
where M is the number of  conductors. This is 
because they can perform the matrix-vector 

multiplication P·σσσσ in order N operations. The 
details about this acceleration method are not the 
goal of this article, and we’ll not dig any further in 
the mechanism; for the interested reader, the 
information about FastCap2’s algorithm can be 
found in [4] and [5]. 
A final note is due, for the sake of completeness. 
You will have noticed that the system of equations 
thus obtained via (19), (15) and (17), even if fully 
addressing the treatment of multiple, piecewise-
constant dielectric regions in the capacitance 
calculation, is not really equivalent to (4). As a 
matter of fact, the system cannot be directly 
written as the product of a real matrix P by the 

vector σσσσ, allowing a simple numerical solution. 
We’ll sketch therefore the method used to 
transform these equations in a linear system that 
can be solved numerically. Let’s assume that the 
charge distribution can be approximated by 
dividing the surface of the conductors in n panels, 
on each of which the charge density is constant. 
This is introducing an error, but if the number of 
panels is large enough (i.e. the discretization is 
fine enough), the error can be contained below a 
defined threshold. Thanks to the discretization, 
equation (19) can be rewritten as a sum, since on 

every panel the constant charge density σ can be 
taken out of the integral, as in (21) 
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where nc is the number of panels into which the 
conductor surfaces have been divided, n-nc is the 
number of panels into which the dielectric 

interfaces have been divided, σck is the charge 
density on the k-th conductor panel and Sck is its 

surface, σdk is the surface charge density on the k-
th dielectric panel, and Sdk is its surface. Let’s now 

evaluate the potential ϕ(x) at the center of the first 

conductor panel, so that x is known3. The integrals 
now depends only on constants and geometrical 
parameters, that are fixed since the geometry does 
not change, and can be calculated, with standard 
integration methods, giving real numbers. Since 
the potential on the conductor’s surface is one of 
our boundary conditions (15), we have, for the 
first panel 
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where x1 is the center of the first panel, and v1 is 
the potential on the first panel. Note that v1 is 
known from V, since the whole surface of each 
conductor is at the same potential, and therefore 
the potential on each panel composing the 
conductor is the same. If we write other nc 
equations like (22), one for each panel of each 
conductor, we get a system of nc equations in n 
unknowns. Substitution of (21) into (17), which is 
the last boundary condition we did not use yet, 
allows to complete the problem statement, 
generating the remaining n-nc equations. One 
simple way to cast (17) with (21) in linear format is 
to approximate the derivatives in (17) using 
divided differences constructed near the target 
panel as in Fig. 3, yelding 
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and use (21) to evaluate the potential at the given 
points in space. 
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Fig. 3.  The potential derivatives on both sides of a dielectric 
panel are approximated with divided differences 

 

                                                             
3 This scheme, that tests the value of the function at the centre 
of the panel, is called ‘collocation’; other approaches are 
possible as well. 
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Writing n-nc equations, one for each panel into 
which the dielectric interfaces have been divided, 
provides therefore the last rows to complete the 
system of equations that can be summarized in 
matrix format as 
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where qi is the total charge on panel i, vi is the 
voltage on panel i, and pi,j and di,j are the 
coefficients4 coming from (22) and (23).  Note that 

qi is equal to σi / ai, where ai is the panel area, 
since we assumed that the surface charge density 
is constant over the panel; so we included the 
geometrical factor 1/ ai directly in the coefficients 
pi,j and di,j. 
The system (24) can be solved for a given set of 
potentials v to find the corresponding charges q. 
Please note that this system is not the same as (4), 
which consists of only m equations and considers 
the overall charges Q on the conductors and their 
potentials V. However (24) it is closely related to 
(4), since each conductor is ultimately composed 
by a set of panels. So, in free space, the sum of the 
charges from qc1 to qc2-1, where c1 is the index of 
the first panel and c2-1 is the index of the last 
panel of the set of panels into which conductor 1 
has been split, is equal to Q1, and so on. On the 
other side, vc1 = vc1+1 = … = vc2-1 = V1, since the 
surface of the conductors is equipotential. The 
final note is related to the link between q and Q 
when dielectrics are present. In this case, 
remember that we are using the Equivalent-
Charge Formulation, so q is the total charge on 
the surface of the panels, not the free charge. We 
need therefore to account for the presence of the 
dielectric in contact with the surface of the 
conductor through (20), that leads to its 
discretized version, when considering discrete 
panels: 
 

 ∑
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11i
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cj
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This equation is valid also if different parts of the 
conductor are in contact with different dielectric 
materials, allowing therefore a different relative 

                                                             
4  In literature, pi,j are often referred to as ‘coefficients of 
potential’. 

permittivity εj for each panel, for treating cases as 
the one shown in Fig. 5. 
 

IV. EXAMPLES 
 
To illustrate the theory explained in the previous 
chapters, we’ll now present two practical examples. 
 
A. Simple three-panels structure 
 
This first example is useful for exemplification 
purposes, but it is not intended to represent a real 
physical case. We will deal with a simple three-
panel structure, as shown in figure, where the 
outmost panels are conductive panels embedded 
in different dielectric mediums, while the middle 
one represents the dielectric interface.  
 

 

 
 
 

Fig. 4.  Simple three-panels structure 

 
There are two main approximations that make our 
problem not accurate with respect to the physical 
reality. 
The first one is that, to keep the problem as simple 
as possible to demonstrate an application of the 
methods of the previous chapter, we’ll assume that 
the charge density is constant all over the panels. 
This is of course far from true, because even in an 
approximate solution, we would split each panel 
in a set of smaller panels, to contain the charge 
density distribution error below a certain 
threshold. 
The second one is that the dielectric interface is 
not complete, while in general it would encompass 
a closed region of space; we are therefore missing 
to force some of the boundary conditions. 
Nevertheless, the method that we’ll use for the 
solution is valid in general, as explained, and 
could be applied to a more complex structure 
yielding accurate results, as it will be shown for 
instance in the example B below. 
We calculate now the geometrical integrals of (21) 
at the points x required to form the system (24) 
when x = x1 and x = x2, where x1 and x2 are the 
center of the first conductor panel and of the 
second conductor panel respectively, and as per 
the divided differences of (23) on the dielectric 
interface (with h small enough with respect to the 
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panel dimensions). We obtain therefore the 

following numerical system (scaled by 04πε , i.e. 

the values must still be divided by 04πε ): 
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Panel number 1 is the dielectric interface, while 
panel number 2 and panel number 3 are the lower 
and upper conductor panels respectively. This can 
be seen also from the numerical values in (26), as 
follows. Elements p2,2 and p3,3 are the self 
coefficients of potential, i.e p2,2 is the potential at 
the center of panels 2 due to the charge present on 
the same panel, and so on. Since the panels are 
geometrically identical, also the values are the 
same. These parameters are calculated from a 
term of an equation like (22), in the case of 
triangular panels: 
 

 x
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xxa
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The expression in (27) can be calculated 
evaluating the integral analytically or numerically, 
according to the required precision. Elements p2,3 
and p3,2 are the mutual coefficients of potential, i.e. 
p2,3 is the potential at the center of panel 2 due to 
the charge present on panel 3,; a similar 
observation is valid for p3,2. Elements  p1,3, p3,2, p3,2 
are relative to the dielectric panel interface, and 
are calculated through (23), evaluated at the 
center of the panel. 
To obtain the capacitance we solve the system (26) 
for two v vectors: [ ]T010  and [ ]T100 . This is 

enough, since we only need to know the charge 
induced on the conductors when the first panel is 
raised to unit potential and the second is 
grounded, and vice-versa. Solving for [ ]T010  and 

finally multiplying by 04πε  yields a charge vector 

q = [ ] 1110533.0347.2196.0 −⋅− T . This is therefore 

the charge arrangement that produces 1 volt on 
the first conductor panel and zero volt on the 
second conductor panel, and fulfils the boundary 
condition of continuity of the normal component 
of the electric flux D at the dielectric interface (of 
course within the used approximations). We 
remember however that the first conductor (the 
lower one) is embedded in a dielectric medium 
with relative permittivity equal to 2, so  we must 
multiply the total charge by this factor to get the 
free induced charge on this conductor. The free 
charge values for the first and second conductor 
are therefore 46.94 pC and –0.533 pC respectively. 

These are the first two components of the Maxwell 
capacitance matrix C [6]. Solving for [ ]T100  and 

multiplying by 04πε  yields a charge vector q = 

[ ] 1110463.2417.0196.0 −⋅−− T . Again multiplying by 

2 the first charge value we get –0.834 pC and 
24.63 pC. We have solved our problem and the 
resulting calculated capacitance matrix is 
therefore (in Farads): 
 

 
1210

63.24834.0

533.094.46 −⋅








−
−

 (28) 

 
For your reference, FasterCap’s input file is 
reported below. The exact syntax is explained in 
[8]; for a basic understanding consider that each 
row begins with a declaration character. The 
asterisk ‘*’ marks a comment; the ‘C’ directive 
indicates a file containing a geometrical 
description of a 3D structure in terms of 
triangular or quadrilateral panels; the ‘D’ directive 
specifies a dielectric interface; the ‘T’ directive 
specifies a triangular panel; the ‘Q’ directive 
specifies a quadrilateral panel. The comments 
interleaved in the input file should help you to 
understand the basic meaning of the definitions. 
 
* Three plates structure 
*  
* lower contact 
* 
* triangle.txt : geometry file name 
* 2.0 : permittivity 
* 0.0 0.0 0.0 : 3D offset 
C triangle.txt  2.0  0.0 0.0 0.0 
 
* dielectric interface 
* 
* triangle.txt : geometry file name 
* 2.0 : outer permittivity 
* 1.0: inner permittivity 
* 0.0 0.0 0.5 : 3D offset 
* 0.25 0.25 0.0 : outer reference point 
D  2.0 1.0  0.0 0.0 0.5  0.25 0.25 0.0 
 
* upper contact 
* 
C triangle.txt  1.0  0.0 0.0 1.0 
 
File triangle.txt 
 
* simple triangle 
 
* plate : conductor name 
* 0 0 0  1 0 0  0 1 0 : 3D vertices 
*                       of the triangle 
T plate  0 0 0  1 0 0  0 1 0 
 
End 

 
 
B. Dielectric filled, finite plate thickness, 

parallel-plate capacitor 
 
A real parallel-plate capacitor has armors with 
finite thickness. Fig. 5 shows the cross-section of 
such a capacitor, when the space between the 
plates is filled with a dielectric medium. 
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Fig. 5.  Parallel plate capacitor with dielectric filler (a) and its 

Equivalent-Charge Formulation model (b). The side of each of 
the two conductive plates of the capacitor that are in contact 
with the dielectric material must accumulate more charges to 
counter-act the polarization charges with respect to the other 

three sides embedded in air. 

 
In this case, the FasterCap input file specification 
must consider the fact that different sides of the 
conductors plates are in contact with different 
materials (i.e. air on the sides, the dielectric filler 
below or above). The FasterCap input file [8] is 
therefore: 
 
* Capacitor 
*  
* This capacitor is made by a dielectric 
* material with relative permittivity 
* equal to 3.0, sandwiched between 
* two square metal contacts 
* with finite thickness 
 
* lower contact 
C capacitor_contact_sides.txt  1.0  0.0 0.0 0.0 +  
C plate.txt  1.0  0.0 0.0 0.0 + 
C plate.txt  3.0  0.0 0.0 0.2 
 
* dielectric medium 
D capacitor_diel_sides.txt  1.0  3.0  0.0 0.0 0.2  
0.5 0.5 0.5 - 
 
* upper contact 
C capacitor_contact_sides.txt  1.0  0.0 0.0 0.8 + 
C plate.txt  3.0  0.0 0.0 0.8 + 
C plate.txt  1.0  0.0 0.0 1.0 
 
 
File capacitor_contact_sides.txt 
* conductor-dielectric interface 
Q 1  1 1 0  1 0 0  1 0 0.2  1 1 0.2 
Q 1  0 1 0  1 1 0  1 1 0.2  0 1 0.2 
Q 1  1 0 0  0 0 0  0 0 0.2  1 0 0.2 
Q 1  0 0 0  0 1 0  0 1 0.2  0 0 0.2 
End 
 
File capacitor_diel_sides.txt 
* air-dielectric interface 
Q 1  1 1 0  1 0 0  1 0 0.6  1 1 0.6 
Q 1  0 1 0  1 1 0  1 1 0.6  0 1 0.6 
Q 1  1 0 0  0 0 0  0 0 0.6  1 0 0.6 
Q 1  0 0 0  0 1 0  0 1 0.6  0 0 0.6 
End 
 
File plate.txt 
* top or bottom capacitor plate 
Q 1  0 0 0  1 0 0  1 1 0  0 1 0 
End 
 

 

 

 
 

Fig. 6.  Thick parallel plate capacitor 3d view. 
 

V. CONCLUSION 
 
This paper reviewed the theory behind  
FasterCap’s and FastCap2’s ability to handle the 
capacitance extraction of arbitrarily shaped 
conductors embedded in multiple, piecewise-
constant, dielectric regions. 
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