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The Treatment of Dielectrics in FasterCap

E. Di Lorenzo, FastFieldSolvers S.r.l.

Abstract — FasterCap and FastCap2 are
quasistatic capacitance solvers able to
handle arbitrarily shaped conductors
embedded in multiple, piecewise-constant,
dielectric regions. This paper reviews the
underlying theory in FasterCap’s treatment
of dielectric regions, where the capacitance
problem is re-formulated as an equivalent
free-space one, where both the conductor-
dielectric and the dielectric-dielectric
interfaces are replaced by a surface-charge
density layer, and the conductors and
dielectrics are replaced by free space. Then
a free-space Green’s function is used to
calculate the electric potential, considering
the field generated by a total charge on the
conductor-dielectric interfaces, and a
polarization charge on the dielectric-
dielectric interfaces. The relation between
the source charges and the potential
ultimately yields the required capacitance
values.

I. INTRODUCTION

The objective of this paper is to explain how the
capacitance solvers FasterCap and FastCap2 can
deal with arbitrarily shaped conductors embedded
in multiple, piecewise-constant, dielectric regions.
The theoretical ground for the employed method
is well established, and the formal mathematical
treatment can be found in [1] and [2] for the 3D
case and the 2D case respectively.

In this paper we present a more intuitive and
engineering view of this concept, applied to the 3D
case. The 2D case requires a slightly different
mathematical formulation, however similar
considerations apply, and therefore it will not be
explicitly presented in the paper.

Section II briefly reviews the mathematical
formulation of the capacitance problem. In section
III the solution method used in FasterCap and
FastCap2 is described. Section IV demonstrates
the method with some example cases.

II. MATHEMATICAL FORMULATION OF
THE CAPACITANCE PROBLEM

As per definition, the capacitance is the ratio of

charge to potential on an electrically charged,
isolated conductor:

== (™

Extending this definition to a set of m conductors,
we can express this relation in the form of a
Maxwell capacitance matrix [6]:

Cll C:Lm V1 Ql
. . . L= (2)

C Com V.

ml - mm m Qm

where the Maxwell capacitance matrix C, which is
square, symmetrical, has real elements and
dimension m, summarizes the relationship
between conductor potentials Vi and conductor
induced free charges Qi. The positive diagonal
element Ci; represents the self-capacitance of
conductor i, while the negative off-diagonal
element C;; represents the capacitive coupling
between conductors i and j.

Our goal is to calculate the elements of the
capacitance matrix C. Recalling Coulomb’s law,
that gives a simple formula for the electric field of
a stationary point charge in free space, we can
readily derive the well known formula for the
corresponding electric potential:

q
47"

V(r) = (3

(plus an arbitrary constant V, that we assume zero
for the time being). In (3) q is the value of the
charge, €, is the vacuum permittivity, and r is the
distance of the charge from the observation point.
It is tempting therefore to try exploiting a similar
relation, extended to an integration region over a
set of charges, for directly calculating, one by one,
the elements Pi; of a matrix P, that relates the
charges Q to the voltages V,

PLl o H,m Ql V1
. . . L= ( 4)
Pu - P lQul [Va

and invert this matrix to get the matrix C.

1 The reader may wonder if there is a method to calculate the
Ci;j elements without passing through P. After all, Gauss’s law
gives a direct relationship between the charge and the electric
field, which is the gradient of the potential. However, to apply
Gauss’s law, we must calculate the electric field, which is a
function of the potentials applied on the conductors. So we
need to solve first for the field generated in the space by a
specific set of voltages V; and then calculate the charges on the
conductors via Gauss’s law. This is possible, and is the basis for
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With this goal in mind, let’s formalize the required
steps, starting with the Maxwell equations:

~ B
DXE:_E (5)
DXI:I=@+3 6)
X
OmM=p )
Om=0 (8)

where E is the electric field strength, H is the
magnetic field strength, D is the electric flux, B

is the magnetic flux, J is the current density, and
p is the free volume charge density. In the static
case, the field quantities do not depend on time,
therefore the magnetic and electric field become

decoupled, being B/ and ID/H& null. For
our electrostatic problem, we are interested in the
electric field. Moreover, since the electrostatic
field exists only outside the conductors (if the field
was not null inside the conductors, the free
charges would move, therefore the field would not

be static), the current J is null: no conduction
current and no impressed current. We are left
therefore with the fundamental equations of the
electrostatics2:

[(IXE=0 ©)
D[IISZ,O (10)

In regions of space filled with homogeneous,
isotropic, nondispersive, linear materials, also the
following relation holds

D=¢(r)E (11)

where ¢(r) is the material permittivity, assumed to
be constant in each of the regions of interest (i.e.
piecewise constant).

A standard way to solve the system composed by

—

(9), (10) and (11) is to leverage (9) to describe E
by a scalar potential ¢:

E=-[¢ (12)

the so-called indirect methods. They are called ‘indirect’ since
there are two different solution steps involved. These are not,
anyway, the methods used by FasterCap and FastCap2, which
are direct. For a broader introduction to the topic, see [4].

2 Note that these equations are valid also in the quasistatic
case, when the wavelength of the frequency variation of the
fields is large with respect to the dimensions of the structures
of interest. A detailed formal derivation of this condition can
be found in [7].

(since the curl of a gradient is always identically
zero, (9) is automatically true), and upon
substitution into (10) via (11) get the Possion’s
equation:

D2¢_ 10

= _% (13)

To be able to solve this equation, we need to
specify  appropriate  boundary  conditions,
matching our problem. We consider therefore, as
boundary, the surface of the conductors S.; the
interfaces between regions filled with different
dielectric materials Sq; and the potential at infinity.

Note also that in the space R°\S between
conductors and dielectric interfaces (that is, the
total volume minus S = S. U Sa) there are no free
charges, so p is zero, and (13) simplifies to the
Laplace’s equation (14).

We have therefore the following boundary
problem:

0°¢=0, in R°\S (14)
@=V, onS. (15)

¢ =¢~, onSq (16)
£+%28_%, on Sq (17)

Iian @(x)=0 (18)

where (15)-(18) provides the conditions on all the
boundaries around the space of interest. In
particular, (15) states that the potential on the
surface of the conductors must be equal to the
given potential v; (16) and (17) give the conditions
across a dielectric interface, i.e. the potential must
be a continuous function (16), and the normal

component of the electric flux D, must be

preserved, n being the normal to the surface Sq
(17); and the limit in (18) fixes zero as the value of
the potential at infinity.

III. EQUIVALENT CHARGE
FORMULATION

For capacitance calculation, only the induced free
charge on the conductors 1is required.
Remembering the idea given by (3), we can think
to solve an equivalent problem, replacing the
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conductors and the dielectrics with free space, and
account for their former influence on the potential
field by placing a thin layer of stationary charges
on Sq and Sc. We then calculate the potential field
generated by this charge arrangement.

This approach is known in literature as the
Equivalent-Charge Formulation (ECF).

In particular, since on each conductor-to-
dielectric interface the total charge is the sum of
free charge and polarization charge, we replace
the conductor-to-dielectric interface with a
surface charge density o. equivalent to the total
charge density. This is shown in Fig. 1. Please note
that stating that o; = or + 0}, where o; is the total
charge density, or is the free charge density, and
op is the polarization charge density, means
considering o, O;, Op as signed quantities. In
general, o; will be, in absolute value, smaller than
o, since the free charge is compensated to some
extent by the bounded dipole charges of the
dielectric, that are aligned generating a net charge
(due to the electric field). Note that the effect of
the dielectric in contact with the surface of a
conductor is accounted for with a relative
permittivity value ¢, in the relation or = € gy, i.e.
the free conductor charge is € times the total
charge on the surface. Basically, the presence of
the dielectric forces the accumulation of a charge €
times greater than the charge we would have
without the dielectric, for the same applied
potential difference. This is of course why high
permittivity dielectrics are used as interposers
between the plates of a capacitor to increase its
capacitance value.

O CEEROEEN O OO COOOCO. Q0. _0.Q O_0O_QQ

50000000000 | "7

Fig. 1. Conductor-to-dielectric interface (a) and its Equivalent-
Charge Formulation model (b)

In a similar way, since on each dielectric-to-
dielectric interface the total charge is the
polarization charge, we replace the dielectric-to-
dielectric interface with a surface charge density
04 equivalent to the total resulting polarization
charge density. This is shown in Fig. 2. In this case,
the different density of polarization charges at the
interface gives a total polarization charge density.

oo o
L ole
ol o
Ll
S| o
]
ol o
Dl
@2 o
=t
®®®
®

®

®

®

®

®

@ (b)

Fig. 2. Dielectric-to-dielectric interface (a) and its Equivalent-
Charge Formulation model (b)

We have now an arrangement of charges in free

space. We can therefore easily write the potential
as superposition of the potentials due to the
conductor surface charge density o. and the
polarization surface charge density g, as follows

I.(X)
A7 | X~ X|

g,(X)
A7, | X~ X|

p09=| ds, +| dS, (9
S S

In (19), XxOR? is the point in space at with we
evaluate the potential, due to conductor and
polarization charges, and we made use of the so
called Green’s function for the free space [4];
more intuitively, however, (19) can be seen simply
as an extension of (3).

We need now to meet the conditions (14)-(18).
Note that the potential defined in (19) already
satisfies the Laplace’s equation (14), is continuous

throughout R®, satisfying (16), and decays like
1/ X, as requested by (18). We need therefore only
to match the remaining boundary conditions (15)
and (17). We therefore use (19), (15) and (17) to
build a system of equations resembling (4), where
we substitute ¢ as given by (19) into (17), and we
solve for o, given the potentials Vi on the
conductors. Once the total charge densities o, are
known, we readily get the free charges Q; induced
on the conductors, integrating the product of o,
and ¢ of on the conductor areas:

Q=[ o, (9e(ds, (20)
S

Note that if we neglected the multiplication by €
we would calculate only the total charges, but for
the sake of capacitance calculation (2) we must
consider the free induced charges, not the total
ones.

We can now compute the terms Cjj of (2). This can
be done in an easy way, defining a set of m unit
voltage vectors Vi (i.e. the voltage vector V, is
composed by a first element V, is equal to one
while the following elements are zero, the voltage
vector V. has the second element V., is equal to
one and the other elements are zero, and so on).
Therefore, multiplying by V, in (2) will provide a
vector Q, that is composed by the elements of the
first column of C. Solving in total m problems we
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completely find C. We use this method since our
system of equations resembles (4), while there is
no direct knowledge of (2); and the method
described above is equivalent to inverting the
matrix P in (4). It is worth adding that the reason
why we don’t invert P straight away is that the
matrix inversion operation has a complexity of N3,
where N is the size of the matrix, becoming
therefore very quickly computationally intractable
as N grows. FasterCap and FastCap2, on the other
hand, employ an acceleration scheme that allows
to treat the problem with a complexity of NM,
where M is the number of conductors. This is
because they can perform the matrix-vector
multiplication P-g in order N operations. The
details about this acceleration method are not the
goal of this article, and we’ll not dig any further in
the mechanism; for the interested reader, the
information about FastCap2’s algorithm can be
found in [4] and [5].

A final note is due, for the sake of completeness.
You will have noticed that the system of equations
thus obtained via (19), (15) and (17), even if fully
addressing the treatment of multiple, piecewise-
constant dielectric regions in the capacitance
calculation, is not really equivalent to (4). As a
matter of fact, the system cannot be directly
written as the product of a real matrix P by the
vector g, allowing a simple numerical solution.
We'll sketch therefore the method used to
transform these equations in a linear system that
can be solved numerically. Let’s assume that the
charge distribution can be approximated by
dividing the surface of the conductors in n panels,
on each of which the charge density is constant.
This is introducing an error, but if the number of
panels is large enough (i.e. the discretization is
fine enough), the error can be contained below a
defined threshold. Thanks to the discretization,
equation (19) can be rewritten as a sum, since on
every panel the constant charge density o can be
taken out of the integral, as in (21)

¢<x>z 3 j |X st e

k:nc+1JOIk '[ 47750|X )(|

where nc is the number of panels into which the
conductor surfaces have been divided, n-nc is the
number of panels into which the dielectric
interfaces have been divided, o« is the charge
density on the k-th conductor panel and S is its
surface, ogx is the surface charge density on the k-
th dielectric panel, and Sqx is its surface. Let’s now
evaluate the potential ¢(x) at the center of the first

conductor panel, so that x is knowns3. The integrals
now depends only on constants and geometrical
parameters, that are fixed since the geometry does
not change, and can be calculated, with standard
integration methods, giving real numbers. Since
the potential on the conductor’s surface is one of
our boundary conditions (15), we have, for the
first panel

Vl_za ok j

= 4ﬁﬁd)& X|

Zadkj

o S ATE, le X|

ds, + (22)

S

where x, is the center of the first panel, and v; is
the potential on the first panel. Note that v, is
known from V, since the whole surface of each
conductor is at the same potential, and therefore
the potential on each panel composing the
conductor is the same. If we write other nc
equations like (22), one for each panel of each
conductor, we get a system of nc equations in n
unknowns. Substitution of (21) into (17), which is
the last boundary condition we did not use yet,
allows to complete the problem statement,
generating the remaining n-nc equations. One
simple way to cast (17) with (21) in linear format is
to approximate the derivatives in (17) using
divided differences constructed near the target
panel as in Fig. 3, yelding

O I (@ -¢") (9 -4.)
h 5 h h

(23)

and use (21) to evaluate the potential at the given
points in space.

Fig. 3. The potential derivatives on both sides of a dielectric
panel are approximated with divided differences

3 This scheme, that tests the value of the function at the centre
of the panel, is called ‘collocation’; other approaches are
possible as well.
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Writing n-nc equations, one for each panel into
which the dielectric interfaces have been divided,
provides therefore the last rows to complete the
system of equations that can be summarized in
matrix format as

P P |G| |V
pnc,l U pn(;n _ Vnc
s~ Do 0 (24)
L dn,l e dn,n __qn_ L 0 a

where q; is the total charge on panel i, v; is the
voltage on panel i, and pi; and di; are the
coefficients4 coming from (22) and (23). Note that
q; is equal to i / aj, where a; is the panel area,
since we assumed that the surface charge density
is constant over the panel; so we included the
geometrical factor 1/ a; directly in the coefficients
pij and d;;.

The system (24) can be solved for a given set of
potentials v to find the corresponding charges q.
Please note that this system is not the same as (4),
which consists of only m equations and considers
the overall charges Q on the conductors and their
potentials V. However (24) it is closely related to
(4), since each conductor is ultimately composed
by a set of panels. So, in free space, the sum of the
charges from e t0 qco-1, Where c1 is the index of
the first panel and c2-1 is the index of the last
panel of the set of panels into which conductor 1
has been split, is equal to Q;, and so on. On the
other side, Ve; = Veys1 = ... = Veoq = V1, since the
surface of the conductors is equipotential. The
final note is related to the link between q and Q
when dielectrics are present. In this case,
remember that we are using the Equivalent-
Charge Formulation, so q is the total charge on
the surface of the panels, not the free charge. We
need therefore to account for the presence of the
dielectric in contact with the surface of the
conductor through (20), that leads to its
discretized version, when considering discrete
panels:

Ci+1_1

Q:zgjqj (25)
i=g

This equation is valid also if different parts of the
conductor are in contact with different dielectric
materials, allowing therefore a different relative

4 In literature, pi,j are often referred to as ‘coefficients of
potential’.

permittivity €; for each panel, for treating cases as
the one shown in Fig. 5.

IV. EXAMPLES

To illustrate the theory explained in the previous
chapters, we’ll now present two practical examples.

A. Simple three-panels structure

This first example is useful for exemplification
purposes, but it is not intended to represent a real
physical case. We will deal with a simple three-
panel structure, as shown in figure, where the
outmost panels are conductive panels embedded
in different dielectric mediums, while the middle
one represents the dielectric interface.

Fig. 4. Simple three-panels structure

There are two main approximations that make our
problem not accurate with respect to the physical
reality.

The first one is that, to keep the problem as simple
as possible to demonstrate an application of the
methods of the previous chapter, we’ll assume that
the charge density is constant all over the panels.
This is of course far from true, because even in an
approximate solution, we would split each panel
in a set of smaller panels, to contain the charge
density distribution error below a certain
threshold.

The second one is that the dielectric interface is
not complete, while in general it would encompass
a closed region of space; we are therefore missing
to force some of the boundary conditions.
Nevertheless, the method that we’ll use for the
solution is valid in general, as explained, and
could be applied to a more complex structure
yielding accurate results, as it will be shown for
instance in the example B below.

We calculate now the geometrical integrals of (21)
at the points x required to form the system (24)
when x = x; and X = X», where x; and X, are the
center of the first conductor panel and of the
second conductor panel respectively, and as per
the divided differences of (23) on the dielectric
interface (with h small enough with respect to the
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panel dimensions). We obtain therefore the
following numerical system (scaled by 47, i.e.

the values must still be divided by 47%,):

37699 -2569 2569] q,] v
1703 4814 0951|q, |=|v,| (26)
1703 0951 4814|q,| |v,

Panel number 1 is the dielectric interface, while
panel number 2 and panel number 3 are the lower
and upper conductor panels respectively. This can
be seen also from the numerical values in (26), as
follows. Elements p.. and ps;; are the self
coefficients of potential, i.e p,. is the potential at
the center of panels 2 due to the charge present on
the same panel, and so on. Since the panels are
geometrically identical, also the values are the
same. These parameters are calculated from a
term of an equation like (22), in the case of
triangular panels:

1 1
=—|—Ad (27)
ez %{Ixi—xl 5

The expression in (27) can be calculated
evaluating the integral analytically or numerically,
according to the required precision. Elements p. 4

and p,» are the mutual coefficients of potential, i.e.

P23 is the potential at the center of panel 2 due to
the charge present on panel 3,; a similar
observation is valid for ps.. Elements pis, P32, P32
are relative to the dielectric panel interface, and
are calculated through (23), evaluated at the
center of the panel.

To obtain the capacitance we solve the system (26)
for two v vectors: [0 1 (" and [0 0 1. This is

enough, since we only need to know the charge
induced on the conductors when the first panel is
raised to unit potential and the second is
grounded, and vice-versa. Solving for [0 1 (" and

finally multiplying by 47%&, yields a charge vector

q = [0196 2347 -0533 10™. This is therefore

the charge arrangement that produces 1 volt on
the first conductor panel and zero volt on the
second conductor panel, and fulfils the boundary
condition of continuity of the normal component
of the electric flux D at the dielectric interface (of
course within the used approximations). We
remember however that the first conductor (the
lower one) is embedded in a dielectric medium
with relative permittivity equal to 2, so we must
multiply the total charge by this factor to get the
free induced charge on this conductor. The free
charge values for the first and second conductor

are therefore 46.94 pC and —0.533 pC respectively.

These are the first two components of the Maxwell
capacitance matrix C [6]. Solving for [0 0 4" and

multiplying by 47, yields a charge vector q =

[-0196 -0417 2463  M0™. Again multiplying by
2 the first charge value we get —0.834 pC and
24.63 pC. We have solved our problem and the
resulting calculated capacitance matrix is
therefore (in Farads):

4694 -0533| .,
10 (28)

-0834 2463

For your reference, FasterCap’s input file is
reported below. The exact syntax is explained in
[8]; for a basic understanding consider that each
row begins with a declaration character. The
asterisk “* marks a comment; the ‘C’ directive
indicates a file containing a geometrical
description of a 3D structure in terms of
triangular or quadrilateral panels; the ‘D’ directive
specifies a dielectric interface; the “T” directive
specifies a triangular panel; the ‘Q’ directive
specifies a quadrilateral panel. The comments
interleaved in the input file should help you to
understand the basic meaning of the definitions.

Three plates structure
| ower contact

*

*

*

*

* triangle.txt : geonetry file nane
* 2.0 : permttivity

* 0.0 0.0 0.0 : 3D offset
Ctriangle.txt 2.0 0.0 0.00.0

dielectric interface

*

*

* triangle.txt : geonetry file nane

* 2.0 : outer permttivity

* 1.0: inner permttivity

* 0.0 0.0 0.5 : 3D offset

* 5 0.0 : outer reference point
D 0.0 0.00.5 0.25 0.25 0.0

* upper contact

*

Ctriangle.txt 1.0 0.0 0.0 1.0
File triangle.txt
* sinple triangle

* plate : conductor nane
*000 100 010 : 3Dvertices
* of the triangle
Tplate 000 100 010

End

B. Dielectric filled, finite plate thickness,
parallel-plate capacitor

A real parallel-plate capacitor has armors with
finite thickness. Fig. 5 shows the cross-section of
such a capacitor, when the space between the
plates is filled with a dielectric medium.
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@ (b)

Fig. 5. Parallel plate capacitor with dielectric filler (a) and its
Equivalent-Charge Formulation model (b). The side of each of
the two conductive plates of the capacitor that are in contact
with the dielectric material must accumulate more charges to
counter-act the polarization charges with respect to the other
three sides embedded in air.

In this case, the FasterCap input file specification
must consider the fact that different sides of the
conductors plates are in contact with different
materials (i.e. air on the sides, the dielectric filler
below or above). The FasterCap input file [8] is
therefore:

* Capacitor

*

* This capacitor is nade by a dielectric
* material with relative permttivity

* equal to 3.0, sandwiched between

* two square netal contacts

* with finite thickness

* | ower contact

C capacitor_contact_sides.txt 1.0 0.0 0.0 0.0 +
Cplate.txt 1.0 0.0 0.0 0.0 +
Cplate.txt 3.0 0.0 0.0 0.2

*

dielectric medi um
D capacitor_diel _sides.txt 1.0 3.0 0.0 0.0 0.2
.50.50.5 -

o

upper contact

capaci tor_contact_sides.txt 1.0 0.0 0.0 0.8 +
plate.txt 3.0 0.0 0.0 0.8 +

plate.txt 1.0 0.0 0.0 1.0

OO0 *

Fil e capacitor_contact_sides.txt
* conductor-dielectric interface

Q1 110 100 1060.2 110.2
Q1 010 110 1102 010.2
Q1 100 000 000.2 100.2
Q1 000 010 010.2 000.2
End

Fil e capacitor_diel _sides.txt

* air-dielectric interface

Q1 110 100 100.6 110.6
Q1 010 110 1106 010.6
Q1 100 000 00O0.6 100.6
Ql 000 010 0106 000O0.6
End

File plate.txt

* top or bottomcapacitor plate
Q1 000 1200 110 010
End

CIIONNCRNCRO RO OO RO RO [OJCINCRICRNCROMONNCRN OO
o} e P 6]
lecfooc'ococoolocccccclioce L0.0.0.0060.000.0.0.1
080000 000 0O
00000000000
000600000008
000000 00000
[CCICCOCCOCCOICOCCCCOCIOCE :"@"@'@"@"@"@"@'E_@'"@":
o - g
CNOINCENCECOMCICINCINCINC) [ONCINCINCRCINCECICIC RO

Fig. 6. Thick parallel plate capacitor 3d view.
V. CONCLUSION

This paper reviewed the theory behind
FasterCap’s and FastCap2’s ability to handle the
capacitance extraction of arbitrarily shaped
conductors embedded in multiple, piecewise-
constant, dielectric regions.
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