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The Treatment of Dielectrics in FasterCap
E. Di Lorenzo, FastFieldSolvers

Abstract –  FasterCap  and  FastCap2  are
quasistatic  capacitance  solvers  able  to
handle  arbitrarily  shaped  conductors
embedded in multiple, piecewise-constant,
dielectric  regions.  This  paper reviews  the
underlying theory in FasterCap’s treatment
of dielectric regions, where the capacitance
problem is re-formulated as an equivalent
free-space one, where both the conductor-
dielectric  and  the  dielectric-dielectric
interfaces are replaced by a surface-charge
density  layer,  and  the  conductors  and
dielectrics are replaced by free space. Then
a  free-space  Green’s  function  is  used  to
calculate the electric potential, considering
the field generated by a total charge on the
conductor-dielectric  interfaces,  and  a
polarization  charge  on  the  dielectric-
dielectric interfaces. The relation between
the  source  charges  and  the  potential
ultimately yields the required capacitance
values.

I. INTRODUCTION

The objective of this paper is to explain how the
capacitance  solvers  FasterCap and FastCap2 can
deal with arbitrarily shaped conductors embedded
in multiple, piecewise-constant, dielectric regions.
The theoretical ground for the employed method
is well established,  and the formal mathematical
treatment can be found in  [1] and  [2] for the 3D
case and the 2D case respectively.
In  this  paper  we  present  a  more  intuitive  and
engineering view of this concept, applied to the 3D
case.  The  2D  case  requires  a  slightly  different
mathematical  formulation,  however  similar
considerations apply, and therefore it will not be
explicitly presented in the paper.
Section  II briefly  reviews  the  mathematical
formulation of the capacitance problem. In section
III  the  solution  method  used  in  FasterCap  and
FastCap2  is  described.  Section  IV  demonstrates
the method with some example cases.

II. MATHEMATICAL FORMULATION OF
THE CAPACITANCE PROBLEM

As per definition,  the capacitance is  the ratio of
charge  to  potential  on  an  electrically  charged,
isolated conductor:

C=Q
V

(1)

Extending this definition to a set of m conductors,
we  can  express  this  relation  in  the  form  of  a
Maxwell capacitance matrix [8]:

[C1,1 ⋯ C1,m
⋮ ⋮ ⋮

Cm ,1 … Cm,m
][V 1⋮Vm

]=[Q1⋮Qm
] (2)

where the Maxwell capacitance matrix C, which is
square,  symmetrical,  has  real  elements  and
dimension  m,  summarizes  the  relationship
between  conductor  potentials  Vi and  conductor
induced  free  charges  Qi.  The  positive  diagonal
element  Ci,i represents  the  self-capacitance  of
conductor  i,  while  the  negative  off-diagonal
element  Ci,j represents  the  capacitive  coupling
between conductors i and j.
Our  goal  is  to  calculate  the  elements  of  the
capacitance  matrix  C.  Recalling  Coulomb’s  law,
that gives a simple formula for the electric field of
a  stationary  point  charge  in  free  space,  we  can
readily  derive  the  well  known  formula  for  the
corresponding electric potential:

V (r )= q
4 πε0r

(3)

(plus an arbitrary constant V0 that we assume zero
for  the time being).  In (3)  q  is  the value of  the
charge, 0 is the vacuum permittivity, and r is the
distance of the charge from the observation point.
It is tempting therefore to try exploiting a similar
relation, extended to an integration region over a
set of charges, for directly calculating, one by one,
the  elements  Pi,j of  a  matrix  P,  that  relates  the
charges Q to the voltages V,

[ P1,1 ⋯ P1 ,m
⋮ ⋮ ⋮

Pm ,1 … Pm,m
][Q1

⋮
Qm

]=[V 1⋮V m
] (4)

and invert this matrix to get the matrix C1.

1 The reader may wonder if there is a method to calculate the
Ci,j elements without passing through P. After all, Gauss’s law
gives a direct relationship between the charge and the electric
field, which is the gradient of the potential. However, to apply
Gauss’s  law,  we  must  calculate  the  electric  field,  which  is  a
function  of  the potentials  applied  on  the  conductors.  So  we
need to solve first  for  the field  generated in  the space  by a
specific set of voltages V; and then calculate the charges on the
conductors via Gauss’s law. This is possible, and is the basis for
the so-called indirect methods. They are called ‘indirect’ since
there are two different solution steps involved. These are not,
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With this goal in mind, let’s formalize the required
steps, starting with the Maxwell equations:

∇ x E⃗=−ϑ B⃗
ϑt

(5)

∇ x H⃗=ϑ D⃗
ϑt

+ J⃗ (6)

∇⋅D⃗= ρ (7)

∇⋅B⃗=0 (8)

where E⃗  is the electric field strength, H⃗  is the

magnetic  field  strength,  D⃗  is  the  electric  flux,

B⃗  is the magnetic flux, J⃗  is the current density,
and   is the free volume charge density.   In the
static case, the field quantities do not depend on
time,  therefore  the  magnetic  and  electric  field

become decoupled,  being  ϑ B⃗ /ϑt  and  ϑ D⃗ /ϑt
null.   For  our  electrostatic  problem,  we  are
interested in the electric field. Moreover, since the
electrostatic  field  exists  only  outside  the
conductors  (if  the  field  was  not  null  inside  the
conductors,  the  free  charges  would  move,
therefore the field would not be static), the current

J⃗  is  null:  no  conduction  current  and  no
impressed current. We are left therefore with the
fundamental equations of the electrostatics2:

∇ x E⃗=0 (9)

∇⋅D⃗= ρ (10)

In  regions  of  space  filled  with  homogeneous,
isotropic, nondispersive, linear materials, also the
following relation holds

D⃗=ε (r ) E⃗ (11)

where ε(r) is the material permittivity, assumed to
be constant in each of the regions of interest (i.e.
piecewise constant).
A standard way to solve the system composed by

(9), (10) and (11) is to leverage (9) to describe E⃗
by a scalar potential φ:

E⃗=−∇ ϕ (12)

(since the curl of a gradient is always identically
zero,  (9)  is  automatically  true),  and  upon

anyway, the methods used by FasterCap and FastCap2, which
are direct. For a broader introduction to the topic, see [4].
2 Note that  these  equations  are  valid  also  in  the quasistatic
case,  when the wavelength of  the frequency variation of  the
fields is large with respect to the dimensions of the structures
of interest. A detailed formal derivation of this condition can
be found in [7].

substitution  into  (10)  via  (11)  get  the  Possion’s
equation:

∇2ϕ=− ρ
ε (r )

(13)

To  be  able  to  solve  this  equation,  we  need  to
specify  appropriate  boundary  conditions,
matching our problem. We consider therefore, as
boundary,  the  surface  of  the  conductors  Sc;  the
interfaces  between  regions  filled  with  different
dielectric  materials  Sd;  and  the  potential  at

infinity.  Note  also  that  in  the  space  R3∖ S
between conductors and dielectric interfaces (that
is, the total volume minus S = Sc ∪  Sd) there are
no free charges, so  is zero, and (13) simplifies to
the Laplace’s equation (14).
We  have  therefore  the  following  boundary
problem [6]:

∇2ϕ=0 ,    in R3∖S (14)

ϕ=v ,    on Sc (15)

ϕ+=ϕ−
,    on Sd (16)

ε+ ϑϕ
+

ϑn
=ε−

ϑϕ−

ϑn
,    on Sd (17)

lim|x|→∞ϕ ( x )=0 (18)

where (15)-(18) provides the conditions on all the
boundaries  around  the  space  of  interest.  In
particular,   (15)  states  that  the  potential  on  the
surface  of  the  conductors  must  be  equal  to  the
given potential v; (16) and (17) give the conditions
across a dielectric interface, i.e. the potential must
be  a  continuous  function  (16),  and  the  normal

component  of  the  electric  flux  D⃗n  must  be

preserved,  n  being  the normal  to  the surface  Sd

(17); and the limit in (18) fixes zero as the value of
the potential at infinity.

III. EQUIVALENT CHARGE
FORMULATION

For capacitance calculation, only the induced free
charge  on  the  conductors  is  required.
Remembering the idea given by (3), we can think
to  solve  an  equivalent  problem,  replacing  the
conductors and the dielectrics with free space, and
account for their former influence on the potential
field by placing a thin layer of stationary charges
on Sd and Sc. We then calculate the potential field
generated by this charge arrangement.
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This  approach  is  known  in  literature  as  the
Equivalent-Charge Formulation (ECF).
In  particular,  since  on  each  conductor-to-
dielectric interface the total charge is the sum of
free  charge  and  polarization  charge,  we  replace
the  conductor-to-dielectric  interface  with  a
surface  charge  density  c equivalent  to  the total
charge density. This is shown in Fig. 1. Please note
that stating that t = f + p, where t is the total
charge density,  f   is the free charge density, and
p is  the  polarization  charge  density,  means
considering  t,  f,  p as  signed  quantities.  In
general, t will be, in absolute value, smaller than
f, since the free charge is compensated to some
extent  by  the  bounded  dipole  charges  of  the
dielectric, that are aligned generating a net charge
(due to the electric field). Note that the effect of
the  dielectric  in  contact  with  the  surface  of  a
conductor  is  accounted  for  with  a  relative
permittivity value  ,  in the relation  f =   t,  i.e.
the  free  conductor  charge  is   times  the  total
charge on the surface.  Basically,  the presence of
the dielectric forces the accumulation of a charge 
times  greater  than  the  charge  we  would  have
without  the  dielectric,  for  the  same  applied
potential  difference.  This  is  of  course  why  high
permittivity  dielectrics  are  used  as  interposers
between the plates  of  a  capacitor  to increase  its
capacitance value.

Fig. 1.  Conductor-to-dielectric interface (a) and its Equivalent-
Charge Formulation model (b)

In  a  similar  way,  since  on  each  dielectric-to-
dielectric  interface  the  total  charge  is  the
polarization charge,  we replace  the dielectric-to-
dielectric interface with a surface charge density
d equivalent  to  the  total  resulting  polarization
charge  density.  This  is  shown in  Fig.  2.  In  this
case, the different density of polarization charges
at  the interface  gives  a  total  polarization  charge
density.

Fig. 2.  Dielectric-to-dielectric interface (a) and its Equivalent-
Charge Formulation model (b)

We have now an arrangement of charges in free
space.  To  solve  (14),  we  can  therefore  cast  the
differential  equation  into  a  boundary  integral

equation  [7],  writing  the  potential  ϕ as
superposition  of  the  potentials  due  to  the
conductor  surface  charge  density  c and  the
polarization surface charge density d, as follows

ϕ(x)=∫
Sc

σc(x
')

4πε 0|x−x '|
dSx '+∫

S
d

σd(x
')

4πε0|x−x'|
dSx' (19)

In (19),  x∈R3  is the point in space at with we
evaluate  the  potential,  due  to  conductor  and
polarization charges,  and we made use of the so
called  Green’s  function  for  the  free  space  [4];
more intuitively, however, (19) can be seen simply
as an extension of (3).
We  need  now  to  meet  the  conditions (14)-(18).
Note  that  the  potential  defined  in  (19)  already
satisfies the Laplace’s equation (14), is continuous

throughout  R3 , satisfying  (16),  and decays  like
1/ x ,  as  requested  by  (18).  We  need  therefore

only to  match the remaining boundary conditions
(15) and (17).  We therefore use  (19), (15) and (17)
to  build  a  system  of  equations  resembling  (4),
where we substitute   as given by (19) into (17),
and we solve for  , given the potentials Vi on the
conductors. Once the total charge densities c are
known, we readily get the free charges Qi induced
on the conductors,  integrating the product  of  c

and  of on the conductor areas:

Qi=∫
Sci

σc ( x )ε ( x )dSx (20)

Note that if  we neglected the multiplication by  
we would calculate only the total charges, but for
the  sake  of  capacitance  calculation  (2)  we must
consider  the  free  induced  charges,  not  the  total
ones.
We can now compute the terms Cij of (2).  This can
be done in an easy way, defining a set of m unit
voltage  vectors  Vk (i.e.  the  voltage  vector  V1 is
composed  by  a  first  element  V1 is  equal  to  one
while the following elements are zero, the  voltage
vector  V2 has the second element V2 is  equal  to
one and the other elements are zero, and so on).
Therefore, multiplying by V1 in (2) will provide a
vector Q1 that is composed by the elements of the
first column of C. Solving in total m problems we
completely find  C. We use this method since our
system of equations resembles (4), while there is
no  direct  knowledge  of  (2);  and  the  method
described  above  is  equivalent  to  inverting  the
matrix P in (4). It is worth adding that the reason
why we don’t  invert  P straight  away is  that  the
matrix inversion operation has a complexity of N3,
where  N  is  the  size  of  the  matrix,  becoming
therefore very quickly computationally intractable
as N grows. FasterCap and FastCap2, on the other
hand, employ an acceleration scheme that allows
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to  treat  the  problem  with  a  complexity  of  NM,
where  M  is  the  number  of   conductors.  This  is
because  they  can  perform  the  matrix-vector
multiplication  P· in  order  N  operations.  The
details about this acceleration method are not the
goal of this article, and we’ll not dig any further in
the  mechanism;  for  the  interested  reader,  the
information  about  FastCap2’s  algorithm  can  be
found in [4] and [5].
A final note is due, for the sake of completeness.
You will have noticed that the system of equations
thus obtained via (19), (15) and (17), even if fully
addressing  the treatment  of  multiple,  piecewise-
constant  dielectric  regions  in  the  capacitance
calculation,  is  not  really  equivalent  to  (4).  As  a
matter  of  fact,  the  system  cannot  be  directly
written as the product of a real  matrix  P by the
vector  ,  allowing  a  simple  numerical  solution.
We’ll  sketch  therefore  the  method  used  to
transform these equations in a linear system that
can be solved numerically.  Let’s assume that the
charge  distribution  can  be  approximated  by
dividing the surface of the conductors in n panels,
on each of which the charge density is constant.
This is introducing an error, but if the number of
panels  is  large  enough  (i.e.  the  discretization  is
fine enough), the error can be contained below a
defined  threshold.  Thanks  to  the  discretization,
equation (19) can be rewritten as a sum, since on
every panel the constant charge density   can be
taken out of the integral, as in (21)

ϕ ( x )=∑
k=1

nc

σck∫
Sck

1
4 πε0|x−x '|

dSx'+ (21)

∑
k=nc+1

n

σ dk∫
Sdk

1
4πε 0|x−x '|

dSx '

where nc is the number of panels into which the
conductor surfaces have been divided, n-nc is the
number  of  panels  into  which  the  dielectric
interfaces  have  been  divided,  ck is  the  charge
density on the k-th conductor panel and Sck is its
surface, dk is the surface charge density on the k-
th dielectric panel, and Sdk is its surface. Let’s now
evaluate the potential (x) at the center of the first
conductor panel, so that x is known3. The integrals
now depends only on constants and geometrical
parameters, that are fixed since the geometry does
not change, and can be calculated, with standard
integration  methods,  giving  real  numbers.  Since
the potential on the conductor’s surface is one of
our  boundary  conditions  (15),  we  have,  for  the
first panel

3 This scheme, that tests the value of the function at the centre
of  the  panel,  is  called  ‘collocation’;  other  approaches  are
possible as well.

v1=∑
k=1

nc

σ ck∫
Sck

1
4πε 0|x1−x'|

dSx'+ (22)

∑
k=nc+1

n

σ dk∫
Sdk

1
4πε0|x1−x '|

dSx'

where x1 is the center of the first panel, and v1 is
the  potential  on  the  first  panel.  Note  that  v1 is
known from  V,  since  the  whole  surface  of  each
conductor is at the same potential, and therefore
the  potential  on  each  panel  composing  the
conductor  is  the  same.  If  we  write  other  nc
equations  like  (22),  one  for  each  panel  of  each
conductor, we get a system of nc equations in n
unknowns. Substitution of (21) into (17), which is
the last  boundary  condition we did  not  use  yet,
allows  to  complete  the  problem  statement,
generating  the  remaining  n-nc  equations.  One
simple way to cast (17) with (21) in linear format is
to  approximate  the  derivatives  in  (17)  using
divided  differences  constructed  near  the  target
panel as in Fig. 3, yelding

ε+ ϑϕ
+

ϑn
−ε−ϑϕ

−

ϑn
=0≈

(ϕc−ϕ+)
h

−
(ϕ−−ϕc)

h
(23)

and use (21) to evaluate the potential at the given
points in space.

Fig.  3.  The potential derivatives on both sides of a dielectric
panel are approximated with divided differences

Writing  n-nc equations,  one for each  panel  into
which the dielectric interfaces have been divided,
provides therefore the last  rows to complete the
system of  equations  that  can  be summarized  in
matrix format as
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ε+

ε-

h

x-

x+



[
p1,1 ⋯ p1, n
⋮ ⋮ ⋮

pnc ,1 ⋯ pnc ,n
dnc+1,1 ⋯ dnc+1 , n

⋮ ⋮ ⋮
dn,1 ⋯ dn ,n

][
q1

⋮

qn

]=[
v1

vnc
0
⋮
0
] (24)

where qi is  the total  charge on panel  i,  vi is  the
voltage  on  panel  i,  and  pi,j and  di,j are  the
coefficients4 coming from (22) and (23).  Note that
qi is  equal  to  i /  ai,  where ai is  the panel  area,
since we assumed that the surface charge density
is  constant  over  the  panel;  so  we  included  the
geometrical factor 1/ ai directly in the coefficients
pi,j and di,j.
The system (24) can be solved for a given set of
potentials  v to find the corresponding charges  q.
Please note that this system is not the same as (4),
which consists of only m equations and considers
the overall charges Q on the conductors and their
potentials  V. However (24) it is closely related to
(4), since each conductor is ultimately composed
by a set of panels. So, in free space, the sum of the
charges from qc1 to qc2-1, where c1 is the index of
the  first  panel  and c2-1  is  the  index  of  the  last
panel of the set of panels into which conductor 1
has been split, is equal to Q1,  and so on. On the
other  side,  vc1 = vc1+1 = … = vc2-1 = V1,  since the
surface  of  the  conductors  is  equipotential.  The
final note is related to the link between  q and  Q
when  dielectrics  are  present.  In  this  case,
remember  that  we  are  using  the  Equivalent-
Charge Formulation, so  q is  the total  charge on
the surface of the panels, not the free charge. We
need therefore to account for the presence of the
dielectric  in  contact  with  the  surface  of  the
conductor  through  (20),  that  leads  to  its
discretized  version,  when  considering  discrete
panels:

Qi= ∑
j=ci

ci+1−1

ε jq j (25)

This equation is valid also if different parts of the
conductor are in contact with different dielectric
materials,  allowing  therefore  a  different  relative
permittivity j for each panel, for treating cases as
the one shown in Fig. 5.

IV. EXAMPLES

To illustrate the theory explained in the previous
chapters,  we’ll  now  present  two  practical
examples.

4 In  literature,  pi,j  are  often  referred  to  as  ‘coefficients  of
potential’.

A. Simple three-panels structure

This  first  example  is  useful  for  exemplification
purposes, but it is not intended to represent a real
physical  case.  We will  deal  with a simple  three-
panel  structure,  as  shown  in  figure,  where  the
outmost panels are conductive panels embedded
in different dielectric mediums, while the middle
one represents the dielectric interface. 

Fig. 4.  Simple three-panels structure

There are two main approximations that make our
problem not accurate with respect to the physical
reality.
The first one is that, to keep the problem as simple
as possible to demonstrate an application of the
methods of the previous chapter, we’ll assume that
the charge density is constant all over the panels.
This is of course far from true, because even in an
approximate solution,  we would split  each panel
in a set of  smaller  panels,  to contain the charge
density  distribution  error  below  a  certain
threshold.
The second one is that the dielectric interface is
not complete, while in general it would encompass
a closed region of space; we are therefore missing
to force some of the boundary conditions.
Nevertheless,  the  method  that  we’ll  use  for  the
solution  is  valid  in  general,  as  explained,  and
could  be  applied  to  a  more  complex  structure
yielding accurate  results,  as it  will  be shown for
instance in the example B below.
We calculate now the geometrical integrals of (21)
at the points x required to form the system (24)
when x = x1 and x = x2,  where x1 and x2  are the
center  of  the  first  conductor  panel  and  of  the
second conductor  panel  respectively,  and as  per
the  divided  differences  of  (23)  on  the  dielectric
interface (with h small enough with respect to the
panel  dimensions).  We  obtain  therefore  the
following numerical system (scaled by 4 πε0 , i.e.

the values must still be divided by 4 πε0 ):
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[37.699 −2.569 2.569
1.703 4 .814 0.951
1.703 0.951 4 .814 ][q1q2q3]=[

v1
v2
v3
] (26)

Panel  number  1  is  the dielectric  interface,  while
panel number 2 and panel number 3 are the lower
and upper conductor panels respectively. This can
be seen also from the numerical values in (26), as
follows.  Elements  p2,2 and  p3,3 are  the  self
coefficients of potential, i.e p2,2 is the potential at
the center of panels 2 due to the charge present on
the same panel,  and so on. Since the panels are
geometrically  identical,  also  the  values  are  the
same.  These  parameters  are  calculated  from  a
term  of  an  equation  like  (22),  in  the  case  of
triangular panels:

p2,2=
1
aT1

∫
T1

1

|x1−x '|
dS

x ' (27)

The  expression  in  (27)  can  be  calculated
evaluating the integral analytically or numerically,
according to the required precision. Elements p2,3

and p3,2 are  the mutual  coefficients  of  potential,
i.e. p2,3 is the potential at the center of panel 2 due
to  the  charge  present  on  panel  3,;  a  similar
observation is valid for p3,2. Elements  p1,3, p3,2, p3,2

are relative to the dielectric panel interface,  and
are  calculated  through  (23),  evaluated  at  the
center of the panel.
To obtain the capacitance we solve the system (26)

for  two  v vectors:  [0 1 0 ]T  and

[0 0 1 ]T . This is enough, since we only need
to  know  the  charge  induced  on  the  conductors
when the first panel is raised to unit potential and
the  second  is  grounded,  and  vice-versa.  Solving

for  [0 1 0 ]T  and  finally  multiplying  by
4 πε0  yields  a  charge  vector  q  =

[0 .196 2 .347 −0 .533 ]T⋅10−11 .  This  is
therefore the charge arrangement that produces 1
volt on the first conductor panel and zero volt on
the  second  conductor  panel,  and  fulfils  the
boundary  condition  of  continuity  of  the  normal
component of the electric flux  D at the dielectric
interface  (of  course  within  the  used
approximations). We remember however that the
first conductor (the lower one) is embedded in a
dielectric medium with relative permittivity equal
to 2, so  we must multiply the total charge by this
factor  to  get  the  free  induced  charge  on  this
conductor. The free charge values for the first and
second conductor  are  therefore  46.94  pC and –
0.533  pC  respectively.  These  are  the  first  two
components of the Maxwell capacitance matrix  C

[8].  Solving for [0 0 1 ]T  and multiplying by

4 πε0  yields  a  charge  vector  q  =

[−0 .196 −0 .417 2.463 ]T⋅10−11 .  Again
multiplying by 2 the first  charge value we get  –
0.834  pC  and  24.63  pC.  We  have  solved  our
problem and the resulting calculated capacitance
matrix is therefore (in Farads):

[46.94 −0 .533
−0 .834 24 .63 ]⋅10−12 (28)

For  your  reference,  FasterCap’s  input  file  is
reported below. The exact syntax is explained in
[10]; for a basic understanding consider that each
row  begins  with  a  declaration  character.  The
asterisk  ‘*’  marks  a  comment;  the  ‘C’  directive
indicates  a  file  containing  a  geometrical
description  of  a  3D  structure  in  terms  of
triangular or quadrilateral panels; the ‘D’ directive
specifies  a  dielectric  interface;  the  ‘T’  directive
specifies  a  triangular  panel;  the  ‘Q’  directive
specifies  a  quadrilateral  panel.  The  comments
interleaved  in  the  input  file  should  help  you  to
understand the basic meaning of the definitions.

* Three plates structure
* 
* lower contact
*
* triangle.txt : geometry file name
* 2.0 : permittivity
* 0.0 0.0 0.0 : 3D offset
C triangle.txt  2.0  0.0 0.0 0.0

* dielectric interface
*
* triangle.txt : geometry file name
* 2.0 : outer permittivity
* 1.0: inner permittivity
* 0.0 0.0 0.5 : 3D offset
* 0.25 0.25 0.0 : outer reference point
D  2.0 1.0  0.0 0.0 0.5  0.25 0.25 0.0

* upper contact
*
C triangle.txt  1.0  0.0 0.0 1.0

File triangle.txt

* simple triangle

* plate : conductor name
* 0 0 0  1 0 0  0 1 0 : 3D vertices
*                       of the triangle
T plate  0 0 0  1 0 0  0 1 0

End

B. Dielectric filled, finite plate thickness, 
parallel-plate capacitor

A  real  parallel-plate  capacitor  has  armors  with
finite thickness.  Fig. 5 shows the cross-section of
such  a  capacitor,  when  the  space  between  the
plates is filled with a dielectric medium.
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Fig. 5.  Parallel plate capacitor with dielectric filler (a) and its
Equivalent-Charge Formulation model (b). The side of each of
the two conductive plates of the capacitor that are in contact
with the dielectric material must accumulate more charges to
counter-act the polarization charges with respect to the other

three sides embedded in air.

In this case, the FasterCap input file specification
must consider the fact that different sides of the
conductors  plates  are  in  contact  with  different
materials (i.e. air on the sides, the dielectric filler
below or above). The FasterCap input file  [10] is
therefore:

* Capacitor
* 
* This capacitor is made by a dielectric
* material with relative permittivity
* equal to 3.0, sandwiched between
* two square metal contacts
* with finite thickness

* lower contact
C capacitor_contact_sides.txt  1.0  0.0 0.0 0.0 + 
C plate.txt  1.0  0.0 0.0 0.0 +
C plate.txt  3.0  0.0 0.0 0.2

* dielectric medium
D capacitor_diel_sides.txt  1.0  3.0  0.0 0.0 0.2  
0.5 0.5 0.5 -

* upper contact
C capacitor_contact_sides.txt  1.0  0.0 0.0 0.8 +
C plate.txt  3.0  0.0 0.0 0.8 +
C plate.txt  1.0  0.0 0.0 1.0

File capacitor_contact_sides.txt
* conductor-dielectric interface
Q 1  1 1 0  1 0 0  1 0 0.2  1 1 0.2
Q 1  0 1 0  1 1 0  1 1 0.2  0 1 0.2
Q 1  1 0 0  0 0 0  0 0 0.2  1 0 0.2
Q 1  0 0 0  0 1 0  0 1 0.2  0 0 0.2
End

File capacitor_diel_sides.txt
* air-dielectric interface
Q 1  1 1 0  1 0 0  1 0 0.6  1 1 0.6
Q 1  0 1 0  1 1 0  1 1 0.6  0 1 0.6
Q 1  1 0 0  0 0 0  0 0 0.6  1 0 0.6
Q 1  0 0 0  0 1 0  0 1 0.6  0 0 0.6
End

File plate.txt
* top or bottom capacitor plate
Q 1  0 0 0  1 0 0  1 1 0  0 1 0
End

Fig. 6.  Thick parallel plate capacitor 3d view.

V. CONCLUSION

This  paper  reviewed  the  theory  behind
FasterCap’s and FastCap2’s ability to handle the
capacitance  extraction  of  arbitrarily  shaped
conductors  embedded  in  multiple,  piecewise-
constant, dielectric regions.
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